Reishi Mushroom (Ganoderma lucidum) Fruiting Body Extract

Ganoderma lucidum is considered the “mushroom of immortality” and called Reishi in Japanese—this is the name it’s most known as in America—and Lingzhi in Chinese. In Traditional Chinese Medicine, it is considered to be a shen tonic. Shen tonics were believed to play roles in supporting peace of mind, joy, emotional balance, optimism, sound sleep, and clear thinking. Reishi’s traditional uses, which included replenishing Qi, easing and centering the mind, increasing resistance to fatigue, promoting well-being, and supporting sleep, are consistent with this role as a shen tonic. It was thought to be ideal for countering restlessness and quieting an overactive mind. In addition to these traditional uses, modern research on reishi mushrooms has focused on immune system support and rejuvenating processes, including stem cell function.*

Reishi extracts contain a variety of compounds, most notably, polysaccharides (including beta glucans), peptidoglycans, and triterpenoid compounds (including lucidenic acids). Reishi also contains low amounts of nucleosides (adenosine, cytidine, guanosine, inosine, thymidine, uridine), nucleotide bases (adenine, guanine, hypoxanthine, thymine and uracil), and the neurotransmitter GABA [1–3].* 


Supports general immune health*

Supports sleep*


Reishi mushroom extract is from the fruiting body, not the mycelium. The fruiting body is what is usually thought of as the “actual” mushroom, as opposed to the mycelium, which is akin to the “root” system of a mushroom.

Reishi mushroom is concentrated through the extraction process (i.e., grams of mushroom are needed to produce one gram of the extract) resulting in a final extract with not less than 30% polysaccharides, since these compounds are linked to general immune support.

Reishi mushroom is Non-GMO and Vegan.


Because reishi is thought of as being an adaptogenic mushroom, we consider dosing to follow hormetic principles similar to herbal adaptogens (see Qualia Dosing Principles). Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone, so our focus with reishi is to provide an amount within this range. When deciding on a serving for a mushroom like reishi, it’s also important to consider the concentration, because more concentrated extracts require lower mg amounts than crude extracts. And finally, it’s important to consider whether the extract is made from fruiting bodies only, or uses mycelium, since the fruiting bodies are the part of a mushroom that concentrates active compounds. Our goal with reishi, as with all ingredient choices, is to select the appropriate serving keeping in mind both the ingredient and the other ingredients being used in a formulation. In other words, if we are also supplying other adaptogen extracts, we are likely to use less reishi than if the only adaptogen we were using was reishi.*


Supports brain function*

Supports learning and memory in animal models* [4,5]

Supports sleep mechanisms* [6–13]

Supports neurogenesis in animal models* [5,14]

Supports brain mitochondrial function* [4,15,16]

Supports neuroprotective functions* [14,17,18]

Supports brain antioxidant defenses* [4,15,16]

Supports healthy microglial function* [19,20]

Supports healthy stress responses*

Supports healthy behavioral and physiological responses to stress* [21]

Supports a healthy gut microbiota*

Supports a healthy gut microbiota composition* [22–29]

Supports microbial metabolism* [23,28,30]

Supports gut immune function* [23,29]

Supports intestinal barrier function* [29]

Supports healthy immune function*

Supports general immune health* [31–35]

Supports innate immunity* [36–49]

Supports adaptive immunity* [38–40,44,47,50–53]

Supports mucosal immunity* [28,47,54,55]  

Supports immune tolerance* [50,56–58]

Supports cellular intrinsic immune defenses* [35,59–67]

Supports immune signaling* [33,40,43]

Supports immune cell function* [31,37,39–44,49,68–72] 

Promotes healthy aging and longevity*

Supports mitochondrial structure and function* [15,17,18]

Supports autophagy* [17,73]

Supports AMPK signaling* [17,74]

Supports mTOR signaling* [17,73–75]

Supports stem cell proliferation and differentiation* [76–78] 

Supports Nrf2 signaling and antioxidant defenses* [79–83]

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


[1]S. Wachtel-Galor, J. Yuen, J.A. Buswell, I.F.F. Benzie, in: I.F.F. Benzie, S. Wachtel-Galor (Eds.), Herbal Medicine: Biomolecular and Clinical Aspects, CRC Press/Taylor & Francis, Boca Raton (FL), 2012.

[2]J.L. Gao, K.S.Y. Leung, Y.T. Wang, C.M. Lai, S.P. Li, L.F. Hu, G.H. Lu, Z.H. Jiang, Z.L. Yu, J. Pharm. Biomed. Anal. 44 (2007) 807–811.

[3]S.-Y. Lin, Y.-K. Chen, H.-T. Yu, G.S. Barseghyan, M.D. Asatiani, S.P. Wasser, J.-L. Mau, Int. J. Med. Mushrooms 15 (2013) 315–323.

[4]Y. Zhou, Z.-Q. Qu, Y.-S. Zeng, Y.-K. Lin, Y. Li, P. Chung, R. Wong, U. Hägg, Exp. Toxicol. Pathol. 64 (2012) 673–680.

[5]S. Huang, J. Mao, K. Ding, Y. Zhou, X. Zeng, W. Yang, P. Wang, C. Zhao, J. Yao, P. Xia, G. Pei, Stem Cell Reports 8 (2017) 84–94.

[6]Y. Kasahara, H. Hikino, Phytotherapy Research 1 (1987) 173–176.

[7]Honda K., Komoda Y., Inoué S., Tokyo Ika. Shika. Daigaku Iyo Kizai Kenkyusho. Hokoku 22 (1988) 77–82.

[8]T. Sun, (1996).

[9]L. Yu, H. Wei, International Journal of Medicinal Mushrooms 2 (2000) 6.

[10]Q.-P. Chu, L.-E. Wang, X.-Y. Cui, H.-Z. Fu, Z.-B. Lin, S.-Q. Lin, Y.-H. Zhang, Pharmacol. Biochem. Behav. 86 (2007) 693–698.

[11]X.-Y. Cui, S.-Y. Cui, J. Zhang, Z.-J. Wang, B. Yu, Z.-F. Sheng, X.-Q. Zhang, Y.-H. Zhang, J. Ethnopharmacol. 139 (2012) 796–800.

[12]M. Rupeshkumar, U. Chettri, S. Jaikumar, R.B. M, P.M. Paarakh, Journal of Applied Pharmacy 8 (2016).

[13]Z. Cheng, J. Wang, Y. Shao, Z. Liang, Y. Ning, Z. Bai, S. Dong, Y.V. Ye, M. Mori, in: S. Zhu, M. Mori (Eds.), The Research on Ganoderma Lucidum (Part One), Shanghai: Shanghai Med Univ, 1993, pp. 339–342.

[14]C. Qin, S.-Q. Wu, B.-S. Chen, X.-X. Wu, K.-Y. Qu, J.-M. Liu, G.-F. Zhang, Y.-F. Xu, S. Shu, L. Sun, Y.-Y. Li, H. Zhu, L. Huang, C.-M. Ma, Y.-H. Xu, Y.-L. Han, Y.-Z. Lu, Zhongguo Yi Xue Ke Xue Yuan Xue Bao 39 (2017) 552–561.

[15]T.A. Ajith, N.P. Sudheesh, D. Roshny, G. Abishek, K.K. Janardhanan, Exp. Gerontol. 44 (2009) 219–223.

[16]N.P. Sudheesh, T.A. Ajith, V. Ramnath, K.K. Janardhanan, Clin. Nutr. 29 (2010) 406–412.

[17]Z.-L. Ren, C.-D. Wang, T. Wang, H. Ding, M. Zhou, N. Yang, Y.-Y. Liu, P. Chan, Acta Pharmacol. Sin. 40 (2019) 441–450.

[18]L.-W. Chen, L.-Y. Horng, C.-L. Wu, H.-C. Sung, R.-T. Wu, Neuropharmacology 63 (2012) 719–732.

[19]Q. Cai, Y. Li, G. Pei, J. Neuroinflammation 14 (2017) 63.

[20]R. Zhang, S. Xu, Y. Cai, M. Zhou, X. Zuo, P. Chan, Evid. Based. Complement. Alternat. Med. 2011 (2011) 156810.

[21]H. Matsuzaki, Y. Shimizu, N. Iwata, S. Kamiuchi, F. Suzuki, H. Iizuka, Y. Hibino, M. Okazaki, BMC Complement. Altern. Med. 13 (2013) 370.

[22]M. Chen, D. Xiao, W. Liu, Y. Song, B. Zou, L. Li, P. Li, Y. Cai, D. Liu, Q. Liao, Z. Xie, Int. J. Biol. Macromol. (2019).

[23]J. Xie, Y. Liu, B. Chen, G. Zhang, S. Ou, J. Luo, X. Peng, Food Nutr. Res. 63 (2019).

[24]J. Su, D. Li, Q. Chen, M. Li, L. Su, T. Luo, D. Liang, G. Lai, O. Shuai, C. Jiao, Q. Wu, Y. Xie, X. Zhou, Front. Microbiol. 9 (2018) 3099.

[25]J. Su, L. Su, D. Li, O. Shuai, Y. Zhang, H. Liang, C. Jiao, Z. Xu, Y. Lai, Y. Xie, Front. Immunol. 9 (2018) 1765.

[26]W.-L. Guo, Y.-Y. Pan, L. Li, T.-T. Li, B. Liu, X.-C. Lv, Food Funct. 9 (2018) 3419–3431.

[27]L.-F. Li, H.-B. Liu, Q.-W. Zhang, Z.-P. Li, T.-L. Wong, H.-Y. Fung, J.-X. Zhang, S.-P. Bai, A.-P. Lu, Q.-B. Han, Sci. Rep. 8 (2018) 6172.

[28]Y. Yang, D.E. Nirmagustina, T. Kumrungsee, Y. Okazaki, H. Tomotake, N. Kato, Biosci. Biotechnol. Biochem. 81 (2017) 1796–1804.

[29]M. Jin, Y. Zhu, D. Shao, K. Zhao, C. Xu, Q. Li, H. Yang, Q. Huang, J. Shi, Int. J. Biol. Macromol. 94 (2017) 1–9.

[30]M. Jin, H. Zhang, J. Wang, D. Shao, H. Yang, Q. Huang, J. Shi, C. Xu, K. Zhao, Int. J. Biol. Macromol. 122 (2019) 723–731.

[31]Y. Gao, S. Zhou, W. Jiang, M. Huang, X. Dai, Immunol. Invest. 32 (2003) 201–215.

[32]Y. Hijikata, A. Yasuhara, Y. Sahashi, Am. J. Chin. Med. 33 (2005) 517–523.

[33]Y. Gao, W. Tang, X. Dai, H. Gao, G. Chen, J. Ye, E. Chan, H.L. Koh, X. Li, S. Zhou, J. Med. Food 8 (2005) 159–168.

[34]Y. Hijikata, S. Yamada, A. Yasuhara, J. Altern. Complement. Med. 13 (2007) 985–987.

[35]B. Donatini, Int. J. Med. Mushrooms 16 (2014) 497–498.

[36]S.J. Won, M.T. Lin, W.L. Wu, Jpn. J. Pharmacol. 59 (1992) 171–176.

[37]L.-Z. Cao, Z.-B. Lin, Immunol. Lett. 83 (2002) 163–169.

[38]Y. Gao, S. Zhou, W. Jiang, M. Huang, X. Dai, Immunol. Invest. 32 (2003) 201–215.

[39]Y. Gao, H. Gao, E. Chan, W. Tang, A. Xu, H. Yang, M. Huang, J. Lan, X. Li, W. Duan, C. Xu, S. Zhou, Immunol. Invest. 34 (2005) 171–198.

[40]X. Chen, Z.-P. Hu, X.-X. Yang, M. Huang, Y. Gao, W. Tang, S.Y. Chan, X. Dai, J. Ye, P.C.-L. Ho, W. Duan, H.-Y. Yang, Y.-Z. Zhu, S.-F. Zhou, Int. Immunopharmacol. 6 (2006) 499–508.

[41]X.-L. Zhu, A.-F. Chen, Z.-B. Lin, J. Ethnopharmacol. 111 (2007) 219–226.

[42]Y.-H. Chang, J.-S. Yang, J.-L. Yang, C.-L. Wu, S.-J. Chang, K.-W. Lu, C.-L. Kuo, T.-C. Hsia, J.-G. Chung, In Vivo 23 (2009) 755–759.

[43]C.-Y. Lai, J.-T. Hung, H.-H. Lin, A.L. Yu, S.-H. Chen, Y.-C. Tsai, L.-E. Shao, W.-B. Yang, J. Yu, Vaccine 28 (2010) 4945–4954.

[44]S.-Q. Huang, Z.-X. Ning, Int. J. Biol. Macromol. 47 (2010) 336–341.

[45]S. Zheng, Y. Jia, J. Zhao, Q. Wei, Y. Liu, Oncol. Lett. 3 (2012) 613–616.

[46]C.-J. Chang, Y.-Y.M. Chen, C.-C. Lu, C.-S. Lin, J. Martel, S.-H. Tsai, Y.-F. Ko, T.-T. Huang, D.M. Ojcius, J.D. Young, H.-C. Lai, Innate Immun. 20 (2014) 301–311.

[47]Y.-S. Wu, S.-Y. Ho, F.-H. Nan, S.-N. Chen, BMC Complement. Altern. Med. 16 (2016) 500.

[48]C. Wang, S. Shi, Q. Chen, S. Lin, R. Wang, S. Wang, C. Chen, Integr. Cancer Ther. 17 (2018) 674–683.

[49]Q. Huang, L. Li, H. Chen, Q. Liu, Z. Wang, Nutrients 11 (2019).

[50]N.S. Lai, R.H. Lin, R.S. Lai, U.C. Kun, S.C. Leu, Lupus 10 (2001) 461–465.

[51]S.-W. Lai, J.-H. Lin, S.-S. Lai, Y.-L. Wu, Am. J. Chin. Med. 32 (2004) 931–940.

[52]Y. Zhang, Z. Lin, Y. Hu, F. Wang, British Journal of Sports Medicine 42 (2008) 519–522.

[53]C.-C. Pi, C.-L. Chu, C.-Y. Lu, Y.-J. Zhuang, C.-L. Wang, Y.-H. Yu, H.-Y. Wang, C.-C. Lin, C.-J. Chen, Vaccine 32 (2014) 401–408.

[54]A. Kubota, M. Kobayashi, S. Sarashina, R. Takeno, K. Okamoto, K. Narumi, A. Furugen, Y. Suzuki, N. Takahashi, K. Iseki, J. Ethnopharmacol. 214 (2018) 240–243.

[55]L.-H. Chen, Z.-B. Lin, W.-D. Li, Acta Pharmacol. Sin. 32 (2011) 1505–1512.

[56]C. Qin, S. Wu, B. Chen, X. Wu, K. Qu, J. Liu, G. Zhang, Y. Xu, S. Shu, L. Sun, Y. Li, H. Zhu, L. Huang, C. Ma, Y. Xu, Y. Han, Y. Lu, Zhongguo Yi Xue Ke Xue Yuan Xue Bao 39 (2017) 330–335.

[57]Y.X. Bao, C.K. Wong, E.K.M. Li, L.S. Tam, P.C. Leung, Y.B. Yin, C.W.K. Lam, Immunopharmacol. Immunotoxicol. 28 (2006) 197–200.

[58]H.-Y. Hsu, Y.-C. Kuan, T.-Y. Lin, S.-M. Tsao, J. Hsu, L.-J. Ma, F. Sheu, Evid. Based. Complement. Alternat. Med. 2013 (2013) 513542.

[59]S.K. Eo, Y.S. Kim, C.K. Lee, S.S. Han, J. Ethnopharmacol. 72 (2000) 475–481.

[60]W.Z. Lim, P.G. Cheng, A.Y. Abdulrahman, T.C. Teoh, J. Biomol. Struct. Dyn. 38 (2020) 4273–4288.

[61]S. Bharadwaj, K.E. Lee, V.D. Dwivedi, U. Yadava, A. Panwar, S.J. Lucas, A. Pandey, S.G. Kang, Sci. Rep. 9 (2019) 19059.

[62]K. Ellan, R. Thayan, J. Raman, K.I.P.J. Hidari, N. Ismail, V. Sabaratnam, BMC Complement. Altern. Med. 19 (2019) 260.

[63]S. Huh, S. Lee, S.J. Choi, Z. Wu, J.-H. Cho, L. Kim, Y.S. Shin, B.W. Kang, J.G. Kim, K. Liu, H. Cho, H. Kang, Molecules 24 (2019).

[64]P.E. Stamets, N.L. Naeger, J.D. Evans, J.O. Han, B.K. Hopkins, D. Lopez, H.M. Moershel, R. Nally, D. Sumerlin, A.W. Taylor, L.M. Carris, W.S. Sheppard, Sci. Rep. 8 (2018) 13936.

[65]W. Zhang, J. Tao, X. Yang, Z. Yang, L. Zhang, H. Liu, K. Wu, J. Wu, Biochem. Biophys. Res. Commun. 449 (2014) 307–312.

[66]S. el-Mekkawy, M.R. Meselhy, N. Nakamura, Y. Tezuka, M. Hattori, N. Kakiuchi, K. Shimotohno, T. Kawahata, T. Otake, Phytochemistry 49 (1998) 1651–1657.

[67]S.K. Eo, Y.S. Kim, C.K. Lee, S.S. Han, J. Ethnopharmacol. 68 (1999) 129–136.

[68]S.L.D. Henao, S.A. Urrego, A.M. Cano, E.A. Higuita, Int. J. Med. Mushrooms 20 (2018) 705–716.

[69]Y.-H. Chang, J.-S. Yang, J.-L. Yang, C.-L. Wu, S.-J. Chang, K.-W. Lu, J.-J. Lin, T.-C. Hsia, Y.-T. Lin, C.-C. Ho, W.G. Wood, J.-G. Chung, Biosci. Biotechnol. Biochem. 73 (2009) 2589–2594.

[70]J. Meng, X. Hu, F. Shan, H. Hua, C. Lu, E. Wang, Z. Liang, Int. J. Biol. Macromol. 49 (2011) 693–699.

[71]W.K. Chan, H.K.W. Law, Z.-B. Lin, Y.L. Lau, G.C.-F. Chan, Int. Immunol. 19 (2007) 891–899.

[72]Y.-L. Lin, S.-S. Lee, S.-M. Hou, B.-L. Chiang, Mol. Pharmacol. 70 (2006) 637–644.

[73]K. Hou, Q. Yu, X. Hu, X. Ding, J. Hong, Y. Chen, J. Xie, S. Nie, M. Xie, Food Chem. Toxicol. 133 (2019) 110757.

[74]D. Sohretoglu, C. Zhang, J. Luo, S. Huang, Signal Transduct Target Ther 4 (2019) 21.

[75]V.T. Cuong, W. Chen, J. Shi, M. Zhang, H. Yang, N. Wang, S. Yang, J. Li, P. Yang, J. Fei, Exp. Gerontol. 117 (2019) 99–105.

[76]W.-Y. Chen, W.-B. Yang, C.-H. Wong, D.T.-B. Shih, Bioorg. Med. Chem. 18 (2010) 8583–8591.

[77]Y.-M. Yan, X.-L. Wang, Q. Luo, L.-P. Jiang, C.-P. Yang, B. Hou, Z.-L. Zuo, Y.-B. Chen, Y.-X. Cheng, Phytochemistry 114 (2015) 155–162.

[78]Y. Pan, A. Zhao, Z. Zhong, X. Pan, S. Cai, Biotechnol. Prog. 35 (2019) e2869.

[79]H.N. Li, L.L. Zhao, D.Y. Zhou, D.Q. Chen, Med. Sci. Monit. 26 (2020) e921905.

[80]F. Xu, X. Li, X. Xiao, L.-F. Liu, L. Zhang, P.-P. Lin, S.-L. Zhang, Q.-S. Li, Biomed. Pharmacother. 95 (2017) 504–512.

[81]Y.-H. Lee, J.-H. Kim, C.-H. Song, K.-J. Jang, C.-H. Kim, J.-S. Kang, Y.-H. Choi, H.-M. Yoon, J Pharmacopuncture 19 (2016) 59–69.

[82]T.-C. Hsieh, J.M. Wu, Int. J. Mol. Med. 28 (2011) 1065–1069.

[83]D. Sargowo, N. Ovianti, E. Susilowati, N. Ubaidillah, A.W. Nugraha, Vitriyaturrida, K.S. Proboretno, M. Failasufi, F. Ramadhan, H. Wulandari, Y. Waranugraha, D.H. Putri, Indian Heart Journal 70 (2018) 608–614.